Least-squares independence regression for non-linear causal inference under non-Gaussian noise
نویسندگان
چکیده
منابع مشابه
Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise
The discovery of non-linear causal relationship under additive non-Gaussian noise models has attracted considerable attention recently because of their high flexibility. In this paper, we propose a novel causal inference algorithm called least-squares independence regression (LSIR). LSIR learns the additive noise model through minimization of an estimator of the squaredloss mutual information b...
متن کاملNon-linear Least Squares
Using measured radial velocity data of nine double lined spectroscopic binary systems NSV 223, AB And, V2082 Cyg, HS Her, V918 Her, BV Dra, BW Dra, V2357 Oph, and YZ Cas, we find corresponding orbital and spectroscopic elements via the method introduced by Karami & Mohebi (2007a) and Karami & Teimoorinia (2007). Our numerical results are in good agreement with those obtained by others using mor...
متن کاملNon-asymptotic model selection for linear non least-squares estimation in regression models and inverse problems
We propose to address the common problem of linear estimation in linear statistical models by using a model selection approach via penalization. Depending then on the framework in which the linear statistical model is considered namely the regression framework or the inverse problem framework, a data-driven model selection criterion is obtained either under general assumptions, or under the mil...
متن کاملRobust linear least squares regression
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملConsistency for the Least Squares Estimator in Non-parametric Regression
We shall study the general regression model Y = g 0 (X) + ", where X and " are independent. The available information about g 0 can be expressed by g 0 2 G for some class G. As an estimator of g 0 we choose the least squares estimator. We shall give necessary and suucient conditions for consistency of this estimator in terms of (basically) geometric properties of G. Our main tool will be the th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2013
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-013-5423-y